
Advanced Mathematical Models & Applications
Vol.5, No.3, 2020, pp.298-302

LINEAR SENSITIVITY ANALYSIS OF THE CONTINUOUS-TIME
MATRIX LYAPUNOV INEQUALITY

Andrey Yonchev∗

Department of Systems and Control, Faculty of Automatics, Technical University, Sofia, Bulgaria

Abstract. In this paper we consider an approach to obtain admissible solution sets of the continuous-time

Lyapunov matrix inequalities using the solution sets of the corresponding continuous Lyapunov equations, under

some solvability conditions. We obtain tight perturbation bounds for the considered continuous-time Lyapunov

matrix inequalities, which are linear functions of the data perturbations.Numerical examples are also presented.
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1 Introduction

In many control problems the design constraints can be reformulated and solved with respect to
Linear Matrix Inequalities (LMIs). This is a not surprising fact since LMIs are direct byproducts
of Lyapunov based criteria, and that Lyapunov techniques play an essential role in the analysis,
design and control of linear systems. An overview of the LMI application can be found in (Boyd
et al., 1996; Scherer & Weiland, 2004/2005; Yonchev et al., 2005).

The asymptotic stability analysis of a linear autonomous system is in fact a good illustra-
tion of the LMIs usage in control theory. Based on the Lyapunov criteria such analysis can be
performed by applying the Lyapunov based inequality. The aim of the paper is to investigate
an approach to obtain an admissible solution set of the continuous-time matrix Lyapunov in-
equality by using the corresponding the solution sets of the continuous-time Lyapunov equation.
Afterwards tight perturbation bounds of the admissible solutions of the considered LMI have to
be computed (Scalcon et al., 2020; Deaecto & Daiha, 2020; Rauh et al., 2020).

Throughout the paper following notation is adopted: Rm×n- the space of real m×n matrices;
Rn = Rn×1; In - the identity n× n matrix; en- the unit n× 1 vector; MT - the transpose of M ;
M⊥- the pseudo inverse of M ;||M ||2 = σmax(M) - the spectral norm of M , where σmax(M) is
the maximum singular value of M ; vec(M) ∈ Rm n- the column-wise vector representation of
M ∈ Rm×n; Πm,n ∈ Rm n×m n- the vec-permutation matrix, such that vec(MT ) = Πm,nvec(M);
M ⊗ P - the Kroneker product of the matrices M and P . The notation “:=” stands for “equal
by definition”, S+(n) is a space of positive definite matrices of size n.

The remaining part of the paper is formulated in the following way. In Section 2 we briefly
present problem set up. In Section 3 we describe the proposed solution approach in order to
obtain an admissible solution set of the matrix Lyapunov inequality and its sensitivity bounds.
In Section 4 we present some numerical examples, the obtained results and discussions. The
paper concludes in Section 5 with some final remarks.
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2 Aim and problem formulation

The aim of the paper is to present an approach to obtain an admissible solution set of the
continuous-time matrix Lyapunov inequality using the solution set of the corresponding continuous-
time Lyapunov equation. Also the problem formulation includes computation of linear per-
turbation bounds for the set of admissible solutions of the continuous-time matrix Lyapunov
inequality.

Let us consider the following linear continuous-time autonomous system

ẋ(t) = Ax(t), A ∈ Rn×n (1)

here x(t) ∈ Rn is the system state and A, and B are constant matrices of corresponding size.

Definition 1. (LMI) (Scherer & Weiland, 2004/2005; Yonchev et al., 2005). Linear matrix
inequality is an expression of the type

F (x) := F0 + x1F1 + · · ·+ xmFm > 0, (2)

where
1. x = (x1, x2, . . . , xm) is a vector of real numbers;
2. F0, F1, . . . , Fm are real symmetric matrices, i.e. Fi = Fi

T ∈ Rn×n, i = 0, 1, . . . ,m;
3. the inequality F (x) > 0 in expression (2) means, that the matrix F (x) is positive definite,
i.e. uTF (x)u > 0 for each 0 ̸= u ∈ Rn.

There exist three main problem connected with studying and application of the LMIs (Scherer
& Weiland, 2004/2005; Yonchev et al., 2005).

1. Admissibility of LMIs. To check if there exist solutions x of the LMI F (x) > 0, is called
admissibility problem.
2. Optimization with LMI constraints.
3. Generalized eigen value problem.

More specifically we are interested in the first problem. The autonomus system (1) is called
asymptotically stable if and only if there exists a symmetric positive definite n × n matrix X,
such that:

ATX +XA < 0 (3)

This result is obtained by A. Lyapunov. With other words it is necessary to find an admissible
solution X0 = X0

T > 0 of the LMI[
−X0 0
0 ATX0 +X0A

]
< 0

The main aim of the publication is connected with performing a sensitivity analysis of the
matrix Lyapunov inequality (3) for a stable matrix A. Sensitivity analysis of the matrix Lya-
punov equation is performed in (Konstantinov et al., 1995; Konstantinov et al., 1999).

We consider the following perturbations ∆A, which are applied to the matrix A. The the
following perturbed LMI can be obtained:

(A+∆A)TX +X(A+∆A) < 0. (4)

Further we assume that the perturbations ∆A do not change the sign of the LMI (4). With
XP = X0 + ∆X0 we denote an admissible solution of the LMI (4), having in mind that X0 is
an admissible solution of the LMI (3).

To perform a linear sensitivity analysis it is necessary that we obtain an analytical description
of the admissible solution sets of the LMIs (3) and (4) of the following type:

Ω := {X0 ∈ S+(n) : ATX0 +X0A < 0} (5)

and
ΩP := {XP ∈ S+(n) : (A+∆A)TXP +XP (A+∆A) < 0} (6)

respectively.
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3 Solution approach

We consider the following Lyapunov equation:

ATX +XA = −Q,Q ∈ S+(n). (7)

A single solution of the equation (7) for a particular matrix Q0 ∈ S+(n) is shown:

X0 = f(A,Q0) ∈ S+(n) (8)

Then the solution set for the expression (7) is given by Ψ := {f(A,Q) ∈ S+(n) : (7)}. An
approach to compute an admissible solution set for the LMI (3) is to use the solution set of the
Lyapunov equation on condition that Q0, Q ∈ S+(n) is fulfilled, i.e.:

Ω := {f(A,Q) : Q ∈ S+(n)} (9)

We claim that the perturbed admissible solution XP of the LMI (4) is a solution of the
Lyapunov equation with slightly perturbed part, i.e.:

(A+∆A)TX +X(A+∆A) = −(Q+∆Q), (Q+∆Q) ∈ S+(n) (10)

for a given (Q0 +∆Q0) ∈ S+(n) we can obtain:

XP = g(A+∆A,Q0 +∆Q0) ∈ S+(n). (11)

In a similar way the solution set of the perturbed equation (10) is the following ΨP := {g(A+
∆A,Q+∆Q) ∈ S+(n) : (10)}. Analogically we can state that an admissible solution set of the
LMI (4) can be found using the solution set of the perturbed Lyapunov equation if the following
condition is satisfied (Q0 +∆Q0), (Q+∆Q) ∈ S+(n), i.e.:

ΩP := {g(A+∆A,Q+∆Q) : (Q+∆Q) ∈ S+(n)} (12)

Further in the paper we will continue with linear sensitivity analysis of the LMI (3) having in
mind the LMI (4). An admissible solution of X0 ∈ S+(n) of the LMI (3) can be obtained by
applying the nominal solution of the Lyapunov equation (7) for Q0 ∈ S+(n). Let us consider the
perturbed Lyapunov equation (10) since for particular matrices Q0 and ∆Q0it can be written
in the following way:

ATX0 +X0A+AT∆X0 +∆X0A+∆ATX0 +X0∆A+N(∆A,∆X0) = −(Q0 +∆Q0) (13)

where the terms of second order of ∆ and ∆X0 are put into the term N(∆A,∆X0). Further in
the paper this term will be eliminated since we perform a linear sensitivity analysis. Using the
equation (7) we obtain the expression

AT∆X0 +∆X0A+∆ATX0 +X0∆A = −∆Q0. (14)

We perform the set up

∆ATX0 +X0∆A = ∆Q̃. (15)

In order to obtain the equality

AT∆X0 +∆X0A = −∆Q0 −∆Q̃. (16)

We use the Kronecker product to rewrite the equation (15) in a matrix-vector form:

Tt∆a = ∆q̃ (17)
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here we use the expressions
Tt = In ⊗X0 + (X0 ⊗ In)Π,

∆a = vec(∆A),∆q̃ = vec(∆Q̃) (18)

and Π is a permutation matrix. Equation (17) states the relation:

||∆q̃||2 ≤ ||Tt||2||∆a||2. (19)

In a similar way the equation (16) can be transformed into:

T∆x0 = −∆q0 − Ttn
∆a

||A||2
, (20)

where
T = In ⊗AT +AT ⊗ In, ||Ttn||2 = ||Tt||2||A||2,

∆q0 = vec(∆Q0),∆x0 = vec(∆X0). (21)

Since matrix A is a stable matrix then the Lyapunov operator is invertible, i.e. the matrix T is
invertible. In such a way the relative perturbation bound of the admissible solution of the LMI
(3) is shown below

||∆x0||2
||X0||2

≤ 1

||X0||2

(
||T1||2

||∆q0||2
||Q0||2

+ ||T−1||2||Ttn||2
||∆a||2
||A||2

)
, (22)

where ||T1||2 = ||T−1||2||Q0||2.

4 Numerical examples

We perform sensitivity analysis of the LMI (3).

Example 1. Consider the following matrices A =

[
−1 0
0 −2

]
and Q0 =

[
2 1
1 3

]
, we apply

the perturbations ∆ = 10−iA and ∆Q0 = 10−iQ0, where i = 8, 7, . . ., 4. First we calculate the
relative real perturbation ||XP−X0||2

||X0||2 in the admissible solution of the LMI (3) after applying
the considered perturbations. Afterwards we compute the relative perturbation bound of the
admissible solution of the LMI (3) according to expression (22). The obtained results are put
in the table shown below:

Table 1: Sensitivity analysis results for Example 1

i ||XP−X0||2
||X0||2

Bound (22)

8 1.5*10−8 3.5*10−8

7 1.5*10−7 3.5*10−7

6 1.5*10−6 3.5*10−6

5 1.5*10−5 3.5*10−5

4 1.5*10−4 3.5*10−4

Example 2. Consider the following matrices A =

 −2 1 0
0 −2 1
0 0 −2

 and Q0 =

 5 1 2
1 4 0
2 0 3

,
we apply the perturbations ∆ = 10−iA and ∆Q0 = 10−iQ0, where i = 8, 7, . . ., 4.

The obtained results are put in the table shown below:
Using the suggested solution method to perform perturbation analysis of the continuous-time

matrix Lyapunov inequality, we obtain the perturbation bound of the admissible solution (22).

This bound is close to the real relative perturbation bound ||XP−X0||2
||X0||2 , which means that they its

good in sense that they its tight.
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Table 2: Sensitivity analysis results for Example 2

i ||XP−X0||2
||X0||2

Bound (22)

8 1.4*10−8 3.8*10−8

7 1.4*10−7 3.8*10−7

6 1.4*10−6 3.8*10−6

5 1.4*10−5 3.8*10−5

4 1.4*10−4 3.8*10−4

5 Conclusion

In this paper we have proposed an approach to obtain an admissible solution set of the continuous-
time matrix Lyapunov inequality using the solution set of the corresponding continuous-time
Lyapunov equation. Tight linear perturbation bounds were computed for the set of admissible
solutions of the continuous-time matrix Lyapunov inequality, which are linear functions of the
data perturbations. Taking into account the obtained theoretical results we have presented nu-
merical examples to vividly express the applicability and performance of the proposed solution
approach to investigate the sensitivity of the matrix Lyapunov inequality for continuous-time
systems.
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